Evaluation of the Murine Immune Response to Xenopsylla cheopis Flea Saliva and Its Effect on Transmission of Yersinia pestis

نویسندگان

  • Christopher F. Bosio
  • Austin K. Viall
  • Clayton O. Jarrett
  • Donald Gardner
  • Michael P. Rood
  • B. Joseph Hinnebusch
  • Pamela L. C. Small
چکیده

BACKGROUND/AIMS Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regularly, but the effect this has on the dynamics of flea-borne transmission of plague has never been investigated. We examined the innate and acquired immune response of mice to bites of Xenopsylla cheopis and its effects on Y. pestis transmission and disease progression in both naïve mice and mice chronically exposed to flea bites. METHODS/PRINCIPAL FINDINGS The immune response of C57BL/6 mice to uninfected flea bites was characterized by flow cytometry, histology, and antibody detection methods. In naïve mice, flea bites induced mild inflammation with limited recruitment of neutrophils and macrophages to the bite site. Infectivity and host response in naïve mice exposed to flea bites followed immediately by intradermal injection of Y. pestis did not differ from that of mice infected with Y. pestis without prior flea feeding. With prolonged exposure, an IgG1 antibody response primarily directed to the predominant component of flea saliva, a family of 36-45 kDa phosphatase-like proteins, occurred in both laboratory mice and wild rats naturally exposed to X. cheopis, but a hypersensitivity response never developed. The incidence and progression of terminal plague following challenge by infective blocked fleas were equivalent in naïve mice and mice sensitized to flea saliva by repeated exposure to flea bites over a 10-week period. CONCLUSIONS Unlike what is observed with many other blood-feeding arthropods, the murine immune response to X. cheopis saliva is mild and continued exposure to flea bites leads more to tolerance than to hypersensitivity. The immune response to flea saliva had no detectable effect on Y. pestis transmission or plague pathogenesis in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas.

For almost a century, the oriental rat flea, Xenopsylla cheopis (Rothschild) (Siphonaptera: Pulicidae), was thought to be the most efficient vector of the plague bacterium Yersinia pestis (Yersin). Approximately 2 wk after consuming an infectious bloodmeal, a blockage often forms in the flea's proventriculus, which forces the flea to increase its biting frequency and consequently increases the ...

متن کامل

Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis.

Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis fo...

متن کامل

Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms

BACKGROUND Transmission of Yersinia pestis by flea bite can occur by two mechanisms. After taking a blood meal from a bacteremic mammal, fleas have the potential to transmit the very next time they feed. This early-phase transmission resembles mechanical transmission in some respects, but the mechanism is unknown. Thereafter, transmission occurs after Yersinia pestis forms a biofilm in the prov...

متن کامل

Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models.

Type VI secretion systems (T6SSs) have been identified recently in several Gram-negative organisms and have been shown to be associated with virulence in some bacterial pathogens. A T6SS of Yersinia pestis CO92 (locus YPO0499-YPO0516) was deleted followed by investigation of the phenotype of this mutation. We observed that this T6SS locus of Y. pestis was preferentially expressed at 26 degrees ...

متن کامل

Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis.

Population genetics and comparative genomics analyses of the pathogenic Yersinia species have indicated that arthropodborne transmission is an evolutionarily recent adaptation in Yersinia pestis, the agent of plague. We show that the infectivity of Y. pestis to its most proficient vector, the rat flea Xenopsylla cheopis, and subsequent transmission efficiency are both low. The poor vector compe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014